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Mechanical systems whose configuration space is a Lie group and whose Lagrangian is invariant to left translations on that group 
are considered. It is assumed that the mass geometry of the system may change under the action of only internal forces. The 
equations of motion admit of a complete set of Noether integrals which are linear in the velocities. For fixed values of these 
integrals, the equations of motion reduce to a non-autonomous system of first-order differential equations on the Lie group. 
Conditions under which the system can be brought from any initial position to another preassigned position by changing its mass 
geometry are discussed. The "falling cat" problem and the problem of the motion of a body of variable shape in an unlimited 
volume of ideal fluid are considered as examples. © 2005 Elsevier Ltd. All rights reserved. 

1. V A R I A B L E  S Y S T E M S  O N  L I E  G R O U P S  

Let G be a connected n-dimensional Lie group which is the configuration manifold of a mechanical 
system with n > 1 degrees of freedom. Let g be its Lie algebra - an n-dimensional vector space with 
the natural commutation operation [,]. For example, we may assume that g is the linear space of left- 
invariant vector fields on the group G, the operation [,] corresponding to the usual commutator (Jacobi 
bracket) of tangent vector fields. 

Let x = ( x t  . . . .  , Xn )  be local coordinates on G, and let 2 = (21, . . . ,  2~) be the velocity of the system 
- the tangent vector to G at the point x. We introduce a basis vl, ---, vn of independent left-invariant 
vector fields (they are linearly independent at all points of G). The velocity 2 may be expressed as a 
linear combination of basis elements 

= ( 1 . 1 )  

The coefficients o) = (o)1, . . . ,  o),) depend on x and 2, the dependence being linear with respect to the 
velocities. They are known as quasi-velocities and serve as coordinates on the algebra g. 

We will consider inertial motion, so that the Lagrangian reduces to the kinetic energy T = T2 + 
T1 + To. We shall assume that the function T is left-invariant; in other words, it depends only on the 
quasi-velocities o) and the time t. The time dependence is due to possible changes in the mass geometry 
of the system solely owing to internal forces. 

Thus, 

T 2 = (Ira, o))/2, T l = ()~, co) (1.2) 

where the inertia matrix I = [[Iij[[ and the gyroscopic vector )~ = (£x, ... , £,) are previously known 
functions of time. Since the free term To depends only on time, it is not essential (since it does not enter 
into the equations of motion). The Poincar6 equations will be equations only on the Lie algebra g 

= 2. Ckio)i'~-'~jj, k = 1 . . . . .  n .  (1.3) 

where c~i  are the structure constants of the algebra g. For details see, e.g. [1, Chap. III]. 
We present two examples. 
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1. Liouville's problem of the rotation of a variable body [2]. We associate with the body fixed axes which, 
at each instant of time, will be the principal axes of inertia of the body; the origin of the moving system 
coincides with the fixed centre of mass. We shall assume that the mass geometry of the system of points 
may vary under the action of internal forces according to a prescribed law. Under these assumptions, 
Eqs (1.3) become Liouville's equations 

(leo+K)" +03x(103+k)  = 0 (1.4) 

where I = diag(I1, 12, 13) and 03 is the angular velocity of rotation of the moving trihedron. The vector 
103 + k is the angular momentum of the variable body about its centre of mass. Equations (1.4) have 
been extended [3] to the case of the three-dimensional motion of a variable body (when G = E(3)). 

2. The problem of the motion of a variable body in an infinite volume of ideal fluid which is in irrotational 
motion and at rest at infinity [3]. In this case G is E(3) - the group of motions of Euclidean three-space, 
and Eqs (1.3)become Kirchhoff's system of equations 

+ ° x J 5  = o, b-5 + = 0 (1.5) 

where ~ is the velocity of the origin of the moving frame of reference, 03 is the angular velocity of the 
moving trihedron, and T is the kinetic energy of the system body + fluid, which depends on x), 03 and 
the time t. 

2. T H E  D Y N A M I C S  OF V A R I A B L E  SYSTEMS W I T H  
Z E R O  A N G U L A R  M O M E N T U M  

Variable systems on Lie groups with left-invariant kinetic energy may be investigated by a method 
developed in [1, Chap. III]. To that end, let us consider n independent right-invariant vector fields 
wl . . . .  , wn. The phase flows that they generate are families of left translations on G. Since the Lagrangian 
(which is identical with the kinetic energy) is by assumption left-invariant, the complete system of 
differential equations (1.1), (1.3) admits of n independent Noether integrals 

OT 3T 
3 - ~  wl = cl . . . .  ' 3 -~  wn = c, (2.1) 

where cl, . . . ,  Cn is a sequence of arbitrary constants. The left-hand sides of these equations are linear 
in the velocities 21, . . . ,  2~. Since the quadratic form T2 is non-degenerate, system (2.1) is solvable for 
the velocities 

= o(x , t , c ) ,  x ~  G (2.2) 

This is a system of equations on the group depending on the parameters c. It has been shown [1] that 
the phase flow (2.2) has properties analogous to those of flows in a multidimensional ideal fluid. 

We will consider the case in which c = 0; we may assume that the system is initially at rest, and then, 
under the action of internal forces, its mass geometry begins to change. Equations (2.2) will then be 
considerably simplified. Indeed, since c = 0 and the vector fields wl, . . . ,  w, are linearly independent 
at all points of G, it follows that 3T/303 = 0. By formulae (1.2) 

3T - / c o + k =  0 
3o) 

Consequently, the velocity co = - I - l k  is a known function of time. 
We may assume without loss of generality that the inertia tensor has been reduced to diagonal form: 

I = diag(I1, . . . ,  In). If kl, . . . ,  k n are the components of the covector of gyroscopic forces k, then 

k k 
C0~ = - - -  k = 1 . . . . .  n 

I k ' 

and consequently Eqs (2.2) for c = 0 follow at once from system (1.1) 
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" Lk 
= - ~ ]  T Vk(x) (2.3) 

k = l  

We recall that "Ol, . . .  , 13 n is a fixed sequence of independent vector fields on the group G. 
The non-autonomous system (2.3) has important properties. For example it admits of an integral 

invariant (invariant measure) whose density is identical with the density of a right-invariant measure 
on G. This result is derived from the results of considering the stationary case [4]. In particular, for a 
unimodular group G (this includes, for example, all compact groups), the flow of system (2.3) preserves 
a two-sided Haar measure. 

On the other hand, the flow of system (2.3) transfers integral curves of every right-invariant vector 
field w to integral curves of the same field. In other words, these curves are frozen into the flow of system 
(2.3). Indeed, the condition for integral curves of a stationary field w(x) to be frozen has the form 
[w, a~] = gw, where g is some function ofx and t (a simple proof of this condition may be found in [5]). 
But [w, ag~] = 0 for all k, since the phase flows generated by left-invariant (right-invariant) vector fields 
on a Lie group are families of right (left) translations. 

Example 1. 

~qcos~p ~2sincp )~lsin~p c°sO )~2c°scP c°sO ~'3 
- -  - - 4  , ~ - -  + 

I1 12 11 sinO 12 sinO [3 

~t sinq0 ~,~cos~p 

In Liouville's problem of the rotation of a variable body, Eqs (2.3) have the form 

I I sinO 12cosO 

(2.4) 

where O, q0 and ~ are the Euler angles - coordinates on the group SO(3). According to system (2.3), 
and the coefficients of -)~flI~ in these formulae define the components of independent left-invariant 
vector fields on the group SO(3), Indeed, for example 

cosq0, -sin~pcos0/sin0, sinq0/sin0 (2.5) 

are the components of unit angular velocity directed along the first moving axis (this follows from the 
kinematic Euler equations). But this immediately implies that (2.5) are the components of a left-invariant 
vector field. 

Equations (2.4) admit of an integral invariant 

fffsi"° od "v (2 .6 )  

which is identical with a two-sided invariant Haar measure on the group SO(3) (see, e.g. [6]). In Euler 
angles ~, % % the right-invariant field corresponding to rotation of a trihedron at unit angular velocity 
about the third fixed axis has components 0, 0, 1. Consequently, the integral curves of this field are 
given by the equations 0, q~ = const. Since the equations of system (2.4) do not explicitly contain in the 
angle % this implies that the aforementioned curves are frozen into the flow of system (2.4). 

Note that Eqs (2.4) also hold for a gyrostat - a rigid body with symmetrical flywheels. The mass 
distribution of such a body obviously does not change (Ik = const) and the gyroscopic moment )~ = 
()q,)~2, )~3) is also constant. In that case Eqs (2.4) can be integrated explicitly. Since system (2.4) has 
the integral invariant (2.6), it is sufficient for its integrability to know a first integral which is not a 
constant. The existence of such an integral is an exceptional phenomenon. 

Equations (2.4) may be expressed as a linear system of differential equations with redundant variables. 
Indeed, it follows from Liouville's equations (1.4) that the angular momentum vector K = Ico  + ~, 
maintains a fixed value and direction in the fixed space. By assumption, K = 0. Consequently, m = -I-1~,. 
Let c~, 13, 7 be a fixed orthonormal frame of reference. Then Poisson's equations 

~ + 0 ~ x ~  = 0, ~+o)xl3  = 0, ~ ' + c o x y  = 0 (2.7) 

will be a closed system of linear equations with variable coefficients. The nine components of the vectors 
~, 13 and 7 obey six orthogonality relations. It is interesting to note that, for system (2.7) to be integrable, 
it is sufficient to know just one non-trivial solution ~(t) of Poisson's equations. Indeed, the function 
({, (x) will be a first integral of the first of equations (2.7) 

(~ ,~ ) "  = ( ~ x t o , ~ ) + ( L ~ x o ) )  : o 
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These remarks may be generalized. By Ado's theorem, every finite-dimensional Lie algebra admits 
of a representation in a finite-dimensional vector space. Consequently, Eqs (2.3) may also be represented 
as a linear system of differential equations (with a redundant sequence of variables). 

Example 2. Let us consider the special case of the plane-parallel motion of a variable body in a 
fluid without the action of external forces: the body moves in such a way that at every instant of 
time its shape and mass distribution are symmetrical about a certain fixed plane 11. Let x and y be the 
Cartesian coordinates of the origin of the moving frame of reference in the plane II, and let ~ be 
the angle of rotation of the moving axes. It is well known (see [3]) that, at all times, the moving frame 
of reference may be chosen in such a way that the kinetic energy of the body + fluid system has the 
form 

2 2 
T = (al l)~+a2v2+b03)12+~lo l + ~ 2 v 2 + g 0 3 + Z  

where 03 = & is the angular velocity of the moving frame, and a) 1 and ~2 are the projections of the velocity 
of the origin of that frame on the moving axes. The coefficients in this formula are assumed to be known 
functions of time. In the case of plane-parallel motion of the body, G is the group of motions of the 
plane E(2). 

Equations (2.3) become 

Llcosa  X2sina ~qsina L2cos~ 
- - - + - - ,  y -  - - ,  dc = - ~  (2.8) 

a 1 a 2 a I a 2 b 

where it is assumed, of course, that the total momentum and angular momentum of the body + fluid 
system are zero. 

We will indicate left-invariant vector fields on E(2) 

X = (cos~ , - s in~ ,0 ) ,  Y = ( s in~ ,cos~ ,0 ) ,  Z = (0,0 ,1)  

Their commutators are 

IX, Y] = 0, [X,Z] = Y, [Y,Z] = - X  (2.9) 

Unlike system (2.4), Eqs (2.8) are easily integrated in the most general case. The flow of system (2.8) 
conserves the standard measure on the group E(2) = {x, y, ~, mod2r~}. 

3. THE C O N D I T I O N S  F O R  C O M P L E T E  C O N T R O L L A B I L I T Y  

Putting uk = - ) ~ k / I k  in system (2.3), let us treat these functions as controls. More precisely, let us assume 
that Uk =- 0 for k > m, and ul . . . . .  Um are arbitrary piecewise-smooth functions of time satisfying the 
inequalities [uk(t) [ -< ~. The question is whether the m controls can be chosen in such a way that the 

1 2 system will go from any initial positionx ~ G to any prescribed positionx ~ G. This property is known 
as complete controllability. 

Obviously, i fm = 1, the system cannot be completely controllable: it cannot coincide with an integral 
curve of the left-invariant field ~)1, which in turn can never fill all of G (of course, ifn > 1). The question 
of complete controllability becomes more interesting for m = 2. 

Theorem. The system 

m 

2 = ~" uk(t)Ok(x), x ~  G (3.1) 
k = l  

is completely controllable if and only if the fields vl, . . . ,  Vm are not contained in any subalgebra of g 
other than g itself. 

This condition may be reformulated as follows. Let us assume that, among the vector fields a~l, . . . ,  a) m 
and the vector fields obtained from them by sucressive applications of the commutation operation, one 
can find n vector fields V1, . . . ,  Vn which are linearly independent at least at one point of G. Then from 
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any point of the connected group G one can move to any other, moving a finite number of times over 
trajectories of the fields a~l, . . . ,  a~m. This is the content of a well-known theorem of Rashevskii-Chow 
[7, 8]. Since the fields V~, . . . ,  Vn are left-invariant (as commutators of left-invariant fields on the group 
G), the fact that they are linearly independent at least at one point of G implies that they are linearly 
independent at all points of G. The required control is constructed in such a way that the time interval 
is divided into intervals Ak in which all controls except one, say ug(t), vanish, while uk(t) = e or 
uk(t) = -~ for t s Ak. 

The sufficient condition just formulated for complete controllability is also necessary. Indeed, let the 
fields a)l, . . . ,  'Om generate a proper subalgebra g' c g, dimg' = m' < n. The algebra g' contains all left- 
invariant vector fields Va, . . . ,  Vm, obtained from the fields vl, -.-, aJm by successive application of the 
commutation operation. Let us define on G an m'-dimensional distribution of tangent vectors, generated 
at each point x s G by linear combinations of vectors Vl(x),..., Vm,(X). Since the subalgebrag' is closed 
under commutation, this distribution is integrable. Consequently, the whole group is stratified into a 
family of integral manifolds Zc (where c is a sequence of n - m'  independent parameters) such that 
the tangent space to Zc at a point x is a linear combination of vectors Vl(X), . . . ,  Vm,(X). Consequently, 
if x0 is a point in some space Y,c, then for all u(t), ... , urn(t) the solution of system (3.1) with initial 
conditionx0 is also in ]~c. It remains to note that, since dimZc = m'  < n, Zc cannot be the whole group 
G. This completes the proof. 

Since a commutator of left-invariant vector fields is a linear combination of vl . . . . .  Vn with constant 
coefficients, the above problem of complete controllability is purely algebraic. Moreover, the complete 
controllability conditions depend exclusively on the group structure of G (of course, after the vector 
fields a~l . . . . .  agn have been chosen). In particular, if the group G is commutative, complete controllability 
is possible only if m = n. 

As already remarked (Section 2), using redundant coordinates, one can represent system (3.1) as a 
linear system of differential equations. This enables the well-developed theory of optimal control to 
be applied in the linear case (see [9]). 

Example 1. Equations (2.4) describe the rotation of a rigid body with symmetric flywheels, where 
the rotation of the flywheels (gyrodynes) may be controlled by internal forces. Then Ik = const, and it 
is natural to choose as controls the relative angular momenta )~k of the flywheels. This problem has 
been extensively studied (see, e.g. [10]). In particular, controlling only two flywheels (not on the same 
axis), one can rotate the body from any position into another. This is a simple corollary of the theorem 
(making use of the properties of the group SO(3)). 

I f  one puts uk = -)~k/I~ and now takes the functions uk as controls, this case reduces to the 
aforementioned problem of a body with flywheels. The method developed here may also be applied to 
the well-known falling cat problem (the first publication of the theorem [11] was accompanied by 
photographs showing how a falling cat reverses its orientation in space). To explain the effect of the 
change of orientation, the cat is often simulated by Lagrange gyroscopes linked together by hinges [12, 
13]. This approach makes it necessary to deal with a fairly complex dynamical system, whose configuration 
space is the direct product SO(3) x SO(3). The approach proposed here reduces the problem essentially 
to the problem of a body with flywheels. Following [12, 13], one can consider the time-optimalproblem, 
which has been studied in detail for a body with flywheels [10]. 

Note that, in the falling cat problem, attention may be confined to the system consisting of the first 
two equations (2.4) (since the cat's angle of rotation when it lands is of no interest). Here is a simple 
example of guaranteed feedback control 

U 1 = ~COS(p, U 2 = - ~ s i n %  u 3 = q ,  

where ~ and 11 are arbitrary continuous functions of time with {(t) > 0. The first equation of system 
(2.4) takes the form 0 = {, and therefore the angle O changes in a finite time from 0 to x, which solves 
the control problem. 

Example 2. If one puts uk = -kk/ak (k = 1, 2) and u 3 --- -g/b in system (2.7) and puts u3 = 0, the 
variable "plane" body + fluid system will not be completely controllable (according to Eqs (2.9)). But 
if one puts ul = 0 (uz = 0), then a suitable choice of controls u2, u3 (or ul, u3) makes it possible to steer 
the moving frame from any position to any prescribed position. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-01096 
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